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Abstract: This article deals with the estimation of fish biomass based on regular samplings. The geostatistical transi-
tive method is a design-based spatially explicit method based on few and falsifiable assumptions concerning the sam-
pling strategy. The falsifiability of a hypothesis corresponds to our capacity to control its adequacy to field data in
practice. We first describe the basics of the method, mention the questions relative to the covariogram estimation, the
units, and the projections of the coordinates, and explain how to fit the model to the experimental covariogram. We
then apply the method to an ICES (International Council for the Exploration of the Sea) triennial mackerel egg survey,
with regular sampling, and to a Moroccan octopus survey, with regular stratified sampling. To compare the present
technique with existing methods, the number and the falsifiability of their respective hypotheses are considered in addi-
tion to the bias, the convergence, and the estimation variance. As is often the case, data are assumed to be synoptic,
and we discuss two examples of spatiotemporal methods.

Résumé : Cet article aborde la question de l’estimation de l’abondance globale d’une population à partir d’un échantil-
lonnage régulier. La méthode géostatistique transitive est une méthode spatiale compatible avec de tels échantillonna-
ges. Elle est basée sur un petit nombre d’hypothèses falsifiables (réfutables) qui portent sur la stratégie
d’échantillonnage. On commence par rappeller les fondements théoriques de cette méthode, présenter les problèmes
pratiques concernant l’estimation du covariogramme, le choix des unités et la projection des coordonnées et par donner
des indications sur l’inférence des modèles. La méthode est ensuite appliquée à une campagne triennale CIEM
d’estimations des œufs de maquereau basée sur un échantillonnage régulier et à une campagne marocaine d’évaluation
du poulpe qui reposent sur un échantillonnage stratifié aléatoire. Afin de comparer l’approche transitive à d’autres mé-
thodes existantes, le nombre et la falsifiabilité des hypothèses mises en jeux dans chacune des méthodes évoquées sont
discutées en plus des propriétés de non biais, de convergence et de variance d’estimation. Comme souvent, l’approche
transitive suppose que les données ont été récoltées en même temps. Ceci amène à mentionner deux exemples
d’approches spatio-temporelles.
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Introduction

The assessment of fish populations by direct observation
should be based ideally on data that are precise (no measure-
ment error), synoptic, global (cover the entire population
area), and as exhaustive as possible (spatially complete).
However, it is not possible to fulfill these requirements in
practice and compromises have to be made between the size
of the gear, the number of samples, their location, the time
needed to visit all sample locations, and the overall time
granted for the survey. In addition, surveys often share sev-
eral objectives targeting several species in a single survey or
looking for environmental information to interpret stock dy-
namics, which leads to more compromises when defining
the sampling strategies. A general rule is that a regular sam-
pling design allows for an optimal balance between the dif-
ferent objectives of a survey (Simmonds and Fryer 1996).
Contrary to random samplings that allow for direct estima-
tions through design-based approaches (e.g., Cochran 1977),

the use of spatially regular samplings requires a model of
spatial covariance (model-based approaches) to generate an
estimation variance.

When geostatistics is applied, it is often done in the so-
called intrinsic approach using variograms (Rivoirard et al.
2000; Petitgas 2001). However, the estimation of the vario-
gram is often difficult in practice because of the characteris-
tics of the fish data (i.e., the location of the high values in
the field, the numerous low or zero densities) and because of
the hypotheses associated with the use of the variogram
(Matheron 1971; Petitgas 1993; Bez and Rivoirard 2001).
Although some authors are suggesting more robust estima-
tors for the variogram (Cressie 1991), the method itself might
be regarded as based on too strong hypotheses. In this re-
gard, one usually looks for estimations based on as few hy-
potheses as possible (principle of parsimony) as this reduces
the possibilities to observe discrepancies between the char-
acteristics of the data and the assumptions on which the esti-
mator is based (robustness).

To estimate global estimation variance in the case of regu-
lar sampling, Matheron (1971) developed the transitive ap-
proach, a model-based method that requires fewer hypotheses
than the intrinsic one. Despite its simplicity, the use of the
transitive approach has not been widespread in the fisheries
community and is only mentioned in short sections in the
fisheries literature. Petitgas (1993) used it in one dimension
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for the very special case of acoustic surveys with parallel
and equidistant transects. Working in two dimensions on
mackerel eggs and larvae, Gohin used it to compute a global
estimation variance of the number of eggs but did not pub-
lish it (F. Gohin, IFREMER, 29280 Plouzané, France, per-
sonal communication). However, this method has recently
been shown to be appropriate for the treatment of spatial
data sets with numerous zeroes (Bez and Rivoirard 2001) as
all samples, including the zero data, are considered. It has
also been shown to be appropriate for global estimation vari-
ance in random stratified samplings (Bez et al. 1995). Our
objective here is to present in detail the theory and the prac-
tical implementation of the transitive approach.

The first part of this paper is devoted to the presentation
of the method. The second part examines two typical situa-
tions: a regular grid design used in ICES (International Coun-
cil for the Exploration of the Sea) triennial egg surveys and a
random stratified design in which samples are located at ran-
dom and independent from one another in each cell of a reg-
ular grid used in Moroccan surveys.

Methods

Theory

Regionalized variable covariogram and relative covariogram
Let x represent a point in space (see Table 1 for a list of

notations). This one-dimensional (1D) notation is chosen for
simplicity. In the usual two-dimensional (2D) case, x is used
for, say, (x′,y′), and space integrals appear as simple rather
than double integrals. This lightens the equations without
any loss of generality. The fish density z(x), taken as a func-
tion of space, is a regionalized variable expressed, for in-
stance, as the number of individuals (ind.) per unit surface
area (e.g., ind.·m–2).

The covariogram (Matheron 1971) is defined by the space
integral of the product of pairs of densities a given distance
h apart:

(1) g(h) = z x z x h x∫ +( ) ( )d

In 2D, it is expressed as the squared number of individuals
per unit surface area (e.g., ind.2·m–2). The distance h is a
vector distance with a modulus and a direction. When the
covariogram is the same for all directions, it is said to be
isotropic; otherwise, it is said to be anisotropic.

The total fish abundance Q is

(2) Q = z x x∫ ( )d

Using the density relative to the total abundance leads to the
relative covariogram (Bez and Rivoirard 2001)

(3)

( )
g h

g h
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∫

which will be used in the rest of the paper.

Properties and meanings of the relative covariogram
The relative covariogram globally decreases from its max-

imum value g(0), taken as an index of aggregation (Bez and

Rivoirard 2001), to 0 at long distances (Fig. 1). The distance
at which the covariogram reaches zero (strictly or asymptoti-
cally) is called the range. It quantifies the maximal diameter
of the population in the particular direction of concern. The
range is therefore a geometrical property of the areal distri-
bution of the population. The covariogram is isotropic in 2D
for circular populations. This is often unrealistic in fisheries
applications, and covariograms of fish densities will gener-
ally be anisotropic, although it is sometimes difficult to de-
termine this anisotropy in practice.

The behaviour of the covariogram near the origin, that is,
for small distances (h), is related to the spatial continuity of
the fish density. When there is large local heterogeneity,
there is large variation between neighbouring fish concentra-
tions and thus a large decrease exists at the origin of the
covariogram. In practice, this decrease is observed rather as
a discontinuity owing to the spacing between data points.
One can theoretically distinguish two reasons for local heter-
ogeneity: the small-scale fish distribution itself and non-
systematic measurement errors. The latter, even though
present in most cases, is often unknown, and splitting the
discontinuity of the covariogram into terms for measurement
errors and small-scale structures is impossible in practice.
Therefore, a relative covariogram model can be written
(Fig. 1):

(4) gr(h) = C01h=0 + C1gr,1(h)

where 1h=0 is the function equal to 1 for distance h = 0 and 0
otherwise, also called the nugget effect. The amplitudes (sills)
of the nugget effect and of the continuous parts of the model
are C0 and C1, respectively.

Global estimation coefficient of variation from strictly
regular sampling

Following the 1D notation, the origin of the sampling grid
(i.e., the starting point of a regular survey) is denoted x0, and
the grid mesh interval is denoted s. A sample point is then
located at x0 + ks, i.e., the origin plus an integer multiple of
the grid mesh interval. The total fish abundance is estimated
by the sum of the sample values times the surface of the grid
mesh

(5) Q s z x ks
k

* ( )= +∑ 0

No probabilistic hypothesis has yet been made and the esti-
mator is a deterministic quantity. Let us now assume that the
location of the origin of the sampling grid is randomly lo-
cated. It can therefore be interpreted as the outcome of a
random variable x0 with uniform distribution over the grid
mesh. The estimator, now denoted Q*(X0), becomes a ran-
dom variable because of the randomness of the origin. Its
bias is 0 because of the uniform distribution of X0:

(6) E Q X Q x
x
ss

[ *( )] ( )0
d= ∫

= +∫ ∑s z x ks
x
ss

k

( )
d

= +∫∑ z x ks x
s

k

( )d
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= ∫ z x x( )d

= Q

After Matheron (1971), the estimation variance

(7) σE
2

0var= −( *( ) )Q X Q

= −E Q X Q( *( ) )0
2

can be expressed as the difference between the discrete and
the exact integral of the covariogram. Using the relative
covariogram leads to the estimation coefficient of variation
(CVE):

(8) CV dE
E

r r= = −∑ ∫σ
Q

s g ks g h h
k*

( ) ( )

The smaller the grid mesh interval, the smaller the estima-
tion CV. The difference between the discrete sum and the
true integral also depends on the regularity of the covario-
gram and, more specifically, on its behaviour near the origin
(e.g., the spatial regularity of the fish density). The estima-
tion CV increases when moving from spatially regular to
spatially irregular fish densities, that is, from covariogram
with a parabolic to a discontinuous behaviour at the origin
(Chilès and Delfiner 1999; Fig. 2). When a significant nug-
get effect exists, it explains nearly all of the estimation CV
(Fig. 2), which can then be approximated by

(9) CVE 0= sC
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Notation Unit Meaning

x Degree or n.mi. A point in space
x = x′ in 1D
x = (x′,y′) in 2D
x = (x′,y′,t′) in 3D, etc.

z(x) ind.·m–2 (ind.·m–2·day–1 or kg·m–2) Fish density at x · regionalized variable
Q ind. (ind.·day–1 or kg) Total fish abundance
h n.mi. Vectoral distance
g(h) ind.2·m–2 (ind.2·m–2·day–2 or kg2·m–2) Covariogram
gr(h) n.mi.–2 Relative covariogram
Nf None Number of functions in the covariogram model, excluding the nugget effect
C0 n.mi.–2 Nugget effect amplitude

gr,1(h) None Relative covariogram excluding the nugget effect.

gr,1,i(h) None Various components of gr,1(h) (nugget effect excluded)

C1 n.mi.–2 Amplitude of of gr,1(h)

C1,i n.mi.–2 Amplitudes of the various components of gr,1(h)

a1,i n.mi. Ranges of the various components of gr,1(h)

dir1,i Degree Directions of anisotropy of the various components of gr,1(h)

ani1,i None Coefficient of anisotropy of the various components of gr,1(h)

x0 Degree or n.mi. Coordinates of the sampling grid origin
s n.mi.2 Grid mesh interval
k None Sampling index
N None Number of samples
X0 Degree or n.mi. Random variable grid origin (uniform over the grid mesh interval s)
Q*(X0) ind. (ind·day–1 or kg) Estimation of Q
σE

2 ind.2 (ind2·day–2 or kg2) Estimation variance

CVE None Coefficient of variation for Q*
sk n.mi.2 Grid squares
Xk Degree Coordinates of random sample in each grid cells
A n.mi.2 Surface area occupied by the population.

Note: 1D, one dimension; 2D, two dimensions; 3D, three dimensions; ind., number of individuals; n.mi., nautical miles. Usual units are given in bold.
Possible alternatives are given in parentheses.

Table 1. List of symbols and variables used in the text.

Fig. 1. Definition of a relative covariogram model gr(h): nugget
effect (1h = 0) with sill C0 and continuous part (gr,1(h)) with sill
C1 and range a1.
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The bias refers to all estimations that would be computed if
resampling were possible with many different grid origins.
To avoid systematic errors over a series of annual surveys,
one should change the origin of the grid from year to year.
One alternative is to use a random stratified sampling.

Global estimation variance from random stratified sampling
A regular stratified sampling is one in which one sample

is located at random in each cell of a regular grid and inde-
pendently from the other cells. Strata are cells of the grid.
Many surveys use this sampling design (e.g., the Interna-
tional Bottom Trawl Surveys in the North Sea (ICES 1997),
the snow crab (Chionoecetes opilio) survey in Canada
(Conan et al. 1988), and the Moroccan cephalopod surveys).

Using the 1D notation, each sample point Xk, k � [1,N]
where N is the number of samples, is random uniform in its
grid cell sk . The estimator of the abundance is a random
variable function of a set of identically and independently
distributed random variables:

(10) Q X s z Xk
k

k*({ }) ( )= ∑
Here again, the randomness concerns the sampling process
and not the fish density. As Xk is random uniform over its
grid cell sk, the estimator is unbiased:

(11) E Q X s E z Xk
k

k[ *({ })] [ ( )]= ∑

= ∫∑s z x
x
s

sk
k

( )
d

= Q

Because of the independence of sample locations between
grid cells, Matheron (1971) showed that the estimation vari-
ance only depends on the behaviour of the covariogram at
distances smaller than the grid mesh size. The estimation
CV is then

(12) CV 0E r r= −s g g s( ( ) ( ))

where g s( ) is the mean value of the covariogram between
two points x and y located independently in a grid cell s:

(13) g s
s

g x y x y
ss

r 2 r
1

d d( ) ( )= −∫∫

Note that this is different from the mean value of the co-
variogram for distances between 0 and s. With the generic
form of covariogram given in eq. 4, CVE simplifies to

(14) CV 1E 0 1 r,1 r,1= + −=sC sC g g sh 0 0( ( ) ( ))

Practical implementation

Covariogram estimation
With regular grids, which are preferred, the relative co-

variogram is estimated for any distance and direction in the
grid. Most logical directions correspond to the two main di-
rections of the grid where sampling density is highest, but
all diagonal directions can be looked at. Following Matheron
(1971), the relative covariogram for a distance equal to a
multiple l number of grid intervals l·s is estimated by the
sum of the products of pairs of densities separated by l grid
nodes:

(15) g ls

z x ks z x ks ls

s z x ks

k

k

r

0 0

0

2
( )

( ) ( )

( )

=
+ + +

+










∑

∑

This assumes that the fish density is zero beyond the sam-
pling area.

For random stratified sampling, one can assume regularity
and put actual distances into distance classes in accordance
with the grid size or use one of the weighted procedures sug-
gested by Bez et al. (1995).

Numerical layout and units
When computing the covariogram, fish density and grid

mesh surface area should be expressed with compatible
units. However, there are cases in which fish density is ex-
pressed in units that do not simplify with those of a surface
area (i.e., kg·h–1). A relative covariogram is expressed as the
inverse of a surface area, whatever the units of the fish den-
sity. This makes it more practical to use than the
covariogram, as one has simply to ensure consistency be-
tween distance units (x axis of the relative covariogram) and
surface area units (y axis of the relative covariogram):

© 2002 NRC Canada
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Fig. 2. Global estimation coefficient of variation (CV) and behav-
iour of the relative covariogram near the origin. The estimation CV
corresponds graphically to the difference between the solid and the
shaded areas. It increases when the spatial local heterogeneity of the
fish density, i.e., C0, increases: (a) no nugget effect and parabolic
behavior, very small estimation CV; (b) no nugget effect and linear
behavior, small estimation CV; (c) reasonable nugget effect and lin-
ear behavior, large estimation CV; (d) large nugget effect and linear
behavior, very large estimation CV.
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(16) units of
2

g h
Q
( )









= ×
×

( ) ( )
(( ) (

units of units of
units of units o

2z s
s f (units of2z s)) )

= 1

Reference system
Computation of distances between points often requires

the projection of data points in a Euclidean reference sys-
tem. Regular sampling might be no longer regular after pro-
jection because of some cosine operations. The method is
then appropriate for samplings that are regular in the pro-
jected space.

Covariogram fitting
The model must be symmetrical, bounded, and positive or

null when the fish density is positive or null and ensure that
the estimation variance is always positive (or null). Not all
mathematical functions (in particular, polynomial functions)
fulfil these requirements. To prevent inconsistencies in the
model, a set of allowable functions has been defined (e.g.,
Chilès and Delfiner 1999). Most of these functions are de-
fined by only one parameter controlling the range (further
denoted a) of the function, i.e., the distances beyond which the
function is either null or below 5% of the value at the origin.

The anisotropy is often modeled by two parameters (Journel
and Huijbregts 1978): the direction (dir) in which the range
is given and the coefficient (ani) by which the range has to
be divided to get the range in the orthogonal direction. The
range for an intermediate direction corresponds to the radius
of the ellipse defined by the maximum and minimum range
in the appropriate directions (Fig. 3). When a covariogram is
made of several functions, the anisotropy of each function
can be different from that of the others.

The continuous part of a model is therefore a combination
of Nf allowable functions defined by four Nf parameters: Nf
ranges, Nf amplitudes, Nf directions of anisotropy, and Nf co-
efficients of anisotropy:

(17) g h C C g h ah i
i

N

i i ir 0 r,1,1 dir ani
f

( ) ( , , ,, , , ,= +=
=
∑0 1

1
1 1 1i )

Once a set of Nf functions is chosen, fitting consists of esti-
mating the four Nf parameters and C0. This can be done us-
ing any kind of parametric regression method. In the present
study, the anisotropy parameters are set manually, whereas
the other ones are estimated by the least squares method.
Thereafter, parameter C0 is deduced by the difference be-
tween the experimental value at the origin and C1gr,1(0). A
graphical control of the fit is systematic to avoid overly opti-
mistic fittings.

Applications

Eggs surveys in the northeast Atlantic
Since 1977, international triennial eggs surveys, coordinated

by ICES, have been carried out to assess mackerel (Scomber
scombrus) and horse mackerel (Trachurus trachurus) stock
sizes (Lockwood et al. 1981; ICES 1996). The sampling
tries to encompass the space (Bay of Biscay, Celtic Sea, and
West of Ireland) and time (February–July) of the whole

spawning season, with four or five sampling periods, depend-
ing on the year. The present study deals with the production
of stage I mackerel eggs during sampling period 2 of 1989.

The sampling follows a regular grid of 0.5° of longitude ×
0.5° of latitude. The origin of the sampling grid was arbi-
trarily located the first time (1977) and not randomized since.
In some grid cells, duplicate samples are made and averaged
prior to the estimation.

Samples were collected by oblique hauls (with Bongo or
Gulf III nets with 500 µm mesh) from the surface to a certain
depth and then back to the surface (Lockwood et al. 1981).
Maximum sampling depth is either the bottom, or 200 m
deep, or 20 m below the thermocline when this exceeds
2.5°C per 10 m depth. Following the standard procedure
established by the ICES Working Group on Mackerel and
Horse Mackerel Egg Surveys, eggs were staged and counted.
Knowing the water temperature at each sample point and the
duration of each developmental stage as a function of the
temperature (Lockwood et al. 1981), a daily production of
stage I eggs was provided for each sample location (Fig. 4).
These were expressed as the number of eggs per day and
square metre (ind.·m–2·day–1).

Decimal latitudes have been multiplied by 60 and decimal
longitudes by 60 times the cosine of the mean latitude of the
sample points (51°00′N). The grid is then still regular after
projection, and the distances and the grid mesh surface area
are expressed in nautical miles (n.mi., 1 n.mi. = 1852 m):

(18) s = 0.5 × 0.5 × 60 × 60 × cos(51) = 566 n.mi.2

The estimated daily production of eggs over the entire
sampling field is

(19) Q* = s·18522 zk
k
∑ = 2.33 × 1013 ind.·day–1

where zk is the sample values at grid cell k (18522 ensures
consistent units between s and zk. The relative covariogram

© 2002 NRC Canada
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Fig. 3. Model of the anisotropy. The ellipse represents the value
of the range for all directions. The example corresponds to the
exponential part of the relative covariogram model of mackerel
eggs, i.e., a covariogram with range 390 nautical miles (n.mi.)
with a geometrical anisotropy of direction –58° and coefficient 3.5.
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has been computed for four different directions: the two
main directions of the grid (east–west and north–south) and
the two bisectors (Fig. 5). The directions are given in trigo-
nometric angles: 0 for the east–west direction and 90 for the
north–south one. The model fit to the experimental data con-
sists of a nugget effect explaining one-third of the overall
spatial structure and an anisotropic exponential function (see
Table 2 for model parameters). This leads to an estimation
CV of 8.4%. The approximation given in eq. 8 gives a CV
equal to 7.7%.

In this example (stage I mackerel egg production rate, 2nd
sampling period, 1989), even though one-third of the egg
spatial structure is due to scales smaller than the intersample
distance and to random measurement errors, the CV of the
global estimation is low. This indicates that, in this case, de-
spite the importance of small-scale variability, the spatial
coverage of the sampling is fine enough to ensure confi-
dence in the order of magnitude of the overall egg produc-
tion estimate. The uncertainties associated with the species
determination of the eggs and their staging are not taken into
account in the above coefficient of variation.

Cephalopod surveys in Morocco
Since 1980, trawl surveys have been performed by the Na-

tional Institute of Fisheries Research (INRH) of Morocco to

study the Moroccan stocks of octopus (Octopus vulgaris) in
Atlantic waters. A random stratified survey takes place in
spring and autumn, the reproductive and recruitment periods
for octopus in this region. A grid with cells of 11 n.mi. ×
11 n.mi. (Fig. 6) covers the entire population, seeking an op-
timal number of samples given the time allocated to the sur-
vey. Here we present data for the October 1998 survey (N =
106 samples).

Samples were collected using a Spanish bottom trawl
adapted for cephalopods. A differential geographical posi-
tioning system (GPS) and a sonar system were used to moni-
tor the swept areas so that sample values were expressed as
metric tonnes of octopus per square meter (t·m–2). In Octo-
ber 1998, the bulk of the population was concentrated in a
small coastal area around the latitude 24°00′ N (Fig. 6). Ze-
roes were obtained at the northern and western borders of
the sampling grid, indicating that sampling exceeded the
population distribution in these directions. Southwards, the
survey is limited by the national border between Morocco
and Mauritania, which does not correspond to a natural bor-
der of octopus (Bravo de Laguna and Balguerias 1993; FAO
1997). As the objective of the study is to estimate the abun-
dance of octopus in the Moroccan waters and because we
lack data beyond this border, we assume that the densities
are null beyond the survey area.

Based on the work of Bez et al. (1995) for irregular sam-
pling, the relative covariogram has been estimated for direc-
tions 15°, 60°, 105°, and 150° (Fig. 7). A model with a
nugget effect and two anisotropic spherical functions has
been fit (see Table 2 for model parameters).

The estimated total abundance is 23 263 t with an estima-
tion CV of 17%. The ratio C0 /C0 + C1 is smaller than for the
mackerel egg example (20 vs. 30%). However, the estima-
tion CV is larger because the relative covariogram, and in
particular C0, for the octopus data is 10 times larger than for
mackerel data, indicating that there is more unexplained
variability in octopus.

Discussion

Model characteristic, sensitivity, and robustness
Covariogram models are defined by a relatively low num-

ber of parameters: five for the present mackerel egg study
and nine for the octopus estimation, including the anisotropic
parameters. The most important parameter for the estimation
variance is the parameter C0, the estimation of which is de-
duced from the behaviour of the covariogram at distances
smaller than the grid mesh, for which we have no observa-
tion. The behaviour of the structure from the first distance
lag to 0 is extrapolated on the basis of the behaviour of the
entire covariogram and of the physical and mathematical
properties of covariograms. These properties act as constraints
and provide more confidence in the behaviour of the co-
variogram near the origin. We considered several different
forms of covariogram models to evaluate the sensitivity of
the results to the model characteristics. In the first case study,
automatic fitting is possible with either one spherical and
two spherical models. This leads to nugget effects of 14 and
12 × 10–6 n.mi.–2, respectively, whereas the goodness of fit
(Rivoirard et al. 2000) is the same. The coefficient of varia-
tion (eq. 8) associated with the model with the largest nug-
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Fig. 4. Proportional representation of the daily production of
stage I mackerel (Scomber scombrus) eggs (ind.·m–2·day–1) of the
second sampling period of the 1989 survey. Squares have a sur-
face proportional to the data. Crosses represent zero data. The
200-m isobath is shown (dotted line). Inset of Europe shows
sampling area in the northeast Atlantic.
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get effect is 9.2%. We found 8.4% using an exponential
model. In the second case study, using only one spherical
model leads to a larger nugget effect than that of the chosen
model (190 × 10–6 n.mi.–2) but decreases the quality of the
fit. Exponential models are rejected by the automatic fitting
procedure. The coefficient of variation (eq. 12) derived from
this new model is 18.7%, whereas we found 17%.

According to the particular locations of the data points of
a given survey, the experimental covariogram is expected to
depart from the true but unknown relative covariogram and
to fluctuate around it from survey to survey. Thus, global es-
timations and their CVE depend on the particular locations
of the data points. In a simulation exercise, which is the only
way to work on a known system, covariogram fluctuations
owing to sampling appear to be maximal at the origin and
decrease as the distance h increases (A. Faraj, Institut Na-
tional de Recherche, 2 rue de Tiznit, Casablanca, Maroc, un-
published data). This reduces the confidence that one has in
a single result. Series of surveys are helpful in this regard.

Comparison with other techniques

Quality of an estimator
Within a given probabilistic framework, the quality of an

estimator is quantified by its bias, its convergence, and its
precision (Saporta 1990). The bias, which is expected to be
null, is the error made on average over several estimations
made in the same conditions. The convergence states that
when the sample size increases, the estimate must get closer
and closer to the true unknown value or, equivalently, that
the estimation variance must get closer and closer to zero.
The precision is often quantified by the estimation variance,
and one would favour estimators with low coefficient of
variation. However, the sole use of these three quality pa-
rameters could be misleading when choosing between esti-
mators that are not based on the same assumptions. The use
of the median to estimate the mean of a variable is a good
example of this difficulty. The median is known to be less
sensitive to extreme values (i.e., outliers) than the arithmetic
mean. However, the convergence of the median only holds if
the distribution of the variable is symetrical, whereas the
arithmetic mean converges to the true mean whatever the
distribution. Therefore, the usefulness of the median depends
on a new assumption, which makes the entire estimation
process less robust, that is, more sensitive to possible dis-
crepancy between the data and the model assumptions.

Therefore, in addition to the bias, the convergence, and
the estimation variance, when choosing, for instance, be-
tween design-based and model-based estimators, one must
then consider the number and the falsifiability of the hypoth-
eses of the respective approaches. The falsifiability of a hy-
pothesis is our capacity to control in practice its adequacy to
field data.

Design-based vs. model-based geostatistical approaches
In the transitive approach, which is a design-based ap-

proach, the major assumption concerns the randomness of
either the origin of the sampling grid or the location of sam-
pling points in the grid cells. Such assumptions are easy to
control in practice. This differs fundamentally with the clas-
sical model-based geostatistical approach in which the sto-
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chastic part of the model and thus the constituent hypotheses
concern the density itself considered as a realization of a
random function (Rivoirard et al. 2000). Assumptions that
concern the stationarity of some aspects of the process (e.g.,
the expected value and the variance for simple cases) are
much more difficult to control in practice.

Area-based vs. area-free approaches
All samples, including the zero data, are considered. Zero

data do not influence the results because the method refers to
spatial integrals and because sums are unaffected by the addi-
tion of zero data. The method does not require the delineation
of the transition between inside and outside the population.
This explains the term transitive and makes the technique
area-free. Still, the zeroes are not ignored and represent cru-
cial information. Their presence tells us whether or not the
whole population has been sampled and, thus, allows for the
meaningful use of the method. In practice, zeroes must have
been observed or unsampled areas can be assumed empty. In
the first study case, it is possible that parts of the egg distri-
bution are missing, as indicated by the large values at the
western ends of transects around 53°00′ N.

Any method based on averages (intrinsic geostatistics, spec-
tral analyses, usual statistics, generalized linear or additive
models, etc.) refers to a field that has to be defined before
estimation. They are area-based. After a polygon is defined,
the use, for instance, of the classical estimation variance
(σiid

2 = s2/N) based on the assumption that samples are inde-
pendent and identically distributed, leads to coefficients of
variation of 12.5 and 24.6% for the two case studies, respec-
tively. In these cases, taking into account the spatial struc-
ture improves the coefficient of variation.

The definition of the population boundary is often a diffi-
cult and subjective step in open marine systems mainly be-
cause of the zero data. The transitive method allows for the
computation of the variance of the error made when estimat-
ing the boundary somewhere between zero and nonzero ob-
servations (Matheron 1971). This geometrical variance (not
presented here) can be added to the estimation variance of
the abundance but is often negligible.

Spatial versus spatiotemporal approaches
The transitive approach, like most survey data analyses,

implicitly assumes that data have been taken at the same
time, which is never true. In some cases (e.g., migrating pe-
lagic fish), bias may be expected if the probability of sam-
pling individuals twice or to miss some parts of the stock is
large. However, in other cases, the behaviour of the target
animals during the survey is such that the global estimate
can be still considered reliable. For egg production, the sur-
vey lasted 22 days, whereas the spawning season, during
which the spawning activity fluctuates slowly, lasts approxi-
mately 4 months. Thus, even though the first and last obser-
vations are about 3 weeks apart, they adequately represent
the overall level of spawning at the time of sampling in the
spawning process. In the second case, octopus are sedentary
and quite immobile. Thus, the time elapsed during the sur-
vey (1 month) matters little. However, approaches exist that
address some spatiotemporal issues.

Helbig and Pepin (1998), for instance, developed a bio-
physical model to distinguish between natural and physical
(mainly advection) causes when estimating plankton mortal-
ity over a series of surveys. Advection and, to a lesser de-
gree, diffusion are taken into account mainly to compare
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Fig. 5. Experimental and modeled relative covariogram for mackerel (Scomber scombrus) eggs (ICES (International Council for the
Exploration of the Sea) triennial survey 1989 2-day sampling period) in four irregular directions given in trigonometric angles: 0°,
open circles, continuous line; 58°, open squares, dotted line; 90°, solid circles, short-dashed line; 122°, solid squares, long-dashed line.
Distance is in nautical miles (n.mi.), relative covariogram, × 10–6 n.mi.–2.
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biomass between surveys, not to estimate the amount of
plankton at a given time from a nonsynoptic survey. As for
universal kriging (Matheron 1971), Helbig and Pepin as-
sumed that densities have a spatiotemporal trend and that the
residuals can be modeled by a spatiotemporal stationary ran-
dom function (the time trend is small at the survey scale).
This framework can be regarded as being more flexible and
thus more adaptable to practical cases than the transitive ap-
proach. The counterpart of this flexibility is that it is based
on more numerous and stronger hypotheses and on more pa-
rameters. In particular, if the number of observations is low
compared with the population area and the heterogeneity of
the variable, the estimation of a trend, a covariance, or a
spectral function may not be objective and realistic. This
was regarded to be the case for egg distributions in the
northeast Atlantic, leading precisely to the use of a transitive
approach (Bez and Rivoirard 2001). The tradeoff between
bias and variance when defining the trend may also lead to
overly optimistic estimates if the trend is not supported by
enough observation (Matheron 1971).

The potential of generalized additive models (GAM) has
also been evaluated for application to spatiotemporal obser-
vations (Augustin et al. 1998). These regression techniques
generally enlarge the number of explanatory variables that
are taken into account and then potentially have a stronger
descriptive power than simpler methods. Here again, the
parameterization of the model can become a weakness if the
quality and the number of data do not allow a realistic enough
control of the model assumptions. Augustin et al. (1998)

have modeled egg density survey data as a smooth function
of space, time, and oceanographic variables. They used the
model to provide a global estimate of egg production and
suggested a bootstrap procedure to compute an estimation
variance. However, even with exhaustive information, egg
density could be modeled by a set of smooth functions having
residuals. The bootstrap procedure based on these residuals
will then provide, contrary to the convergence property, a
positive estimation variance.

Taking time into account aims at increasing the adequacy
between field data and the model. However, using a 3D
model instead of a 2D one may lead, contrary to expectation,
to an increase of estimation variance because the same amount
of information is used to fit a more complex model. At best,
a regular space–time distribution of the data allows us to de-
scribe one particular direction of the 3D space. Working on
day–night effect, Rivoirard and Wieland (2001) observed
that although the estimated abundance was not significantly
changed when using a spatiotemporal model, estimation
variances were larger.

Sampling limitations
As mentioned in Introduction, the transitive method is an

appropriate technique for regular sampling schemes. There
are two fundamental reasons for that. First, realistic esti-
mates of the covariogram are only available for regular
samplings where each observation gets the same area of in-
fluence s. Let us consider the first and the second point of
any pair of observations (z(x0 + ks), z(x0 + ks + ls)) used for
the estimation of the covariogram at distance l·s (eq. 15).
When the first point covers its surface of influence, which
amounts to considering the true integral of the covariogram
(eq. 3), so does the second one. Therefore, weighting their
product by s allows an effective estimate of the covariogram.
In an irregular sampling, the second point would have a dif-
ferent surface of influence. Weighting by s no longer repre-
sents the number of pairs in the true integral and a complex
weighting procedure has to be used (Bez et al. 1995). The
second reason is that estimation variance (eq. 8) is based on
the fact that combining all possible outcomes of the random
starting point of a sampling grid and the grid nodes amounts
to covering the space entirely. This is no longer true for ir-
regular samplings.

Measurement errors
Measurement error is often modeled by a random variable

with a zero mean and a given variance, but without any
autocorrelation and any correlation with the fish density it-
self. In this case, we no longer observe the true density z(x),
but y(x) = z(x) + w(x), where w(x) is the random white noise.
Given that the mean of w(x) on the study field of surface A
is 0 and its variance is σw

2 , one can show that only the nug-
get effect is affected by the measurement errors:

(20) g h A g hy
w h

z
r

2
r( ) ( )= +=σ 1 0

= +′ =C C g hh0 1 r,11 0 ( )

and that the estimation CV increases by sA wσ2 . When mea-
surement error increases, C0 and CVE increase accordingly.
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Fig. 6. Proportional representation of octopus (Octopus vulgaris)
densities (t·m–2) as observed during the Moroccan survey in Oc-
tober 1998. Dashed lines represent the grid used for implement-
ing the samples (one sample located at random in each cell of
the grid given that no rocky area is encountered). Squares have a
surface proportional to the data values. Crosses represent zero
data. Inset of Africa shows Morroccan survey area.

J:\cjfas\cjfas59\cjfas5912\F02-155.vp
Thursday, January 09, 2003 11:35:11 AM

Color profile: Disabled
Composite  Default screen



In conclusion, the transitive approach, a spatially explicit
technique, allows for a design-based global estimation of
abundance with an estimation variance for regular or regular
stratified sampling. This theory makes relatively few assump-
tions (randomness of either the origin of the sampling grid
or the location of data points in grid cells) that are easily
controlled in practice (i.e., falsifiable). Together with the low
number of parameters to be estimated, this ensures robust re-
sults. However, as it is designed strictly for spatial applica-
tions, it assumes that all observations are synoptic.
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